rrelu function.

activation_rrelu(
  x,
  lower = 0.125,
  upper = 0.333333333333333,
  training = NULL,
  seed = NULL
)

Arguments

x

A `Tensor`. Must be one of the following types: `float16`, `float32`, `float64`.

lower

`float`, lower bound for random alpha.

upper

`float`, upper bound for random alpha.

training

`bool`, indicating whether the `call` is meant for training or inference.

seed

`int`, this sets the operation-level seed. Returns:

Value

A `Tensor`. Has the same type as `x`.

Details

Computes rrelu function: `x if x > 0 else random(lower, upper) * x` or `x if x > 0 else x * (lower + upper) / 2` depending on whether training is enabled. See [Empirical Evaluation of Rectified Activations in Convolutional Network](https://arxiv.org/abs/1505.00853).

Computes rrelu function

`x if x > 0 else random(lower, upper) * x` or `x if x > 0 else x * (lower + upper) / 2` depending on whether training is enabled.