Weight Normalization layer

layer_weight_normalization(object, layer, data_init = TRUE, ...)

Arguments

object

Model or layer object

layer

a layer instance.

data_init

If `TRUE` use data dependent variable initialization

...

additional parameters to pass

Value

A tensor

Details

This wrapper reparameterizes a layer by decoupling the weight's magnitude and direction. This speeds up convergence by improving the conditioning of the optimization problem. Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks: https://arxiv.org/abs/1602.07868 Tim Salimans, Diederik P. Kingma (2016) WeightNormalization wrapper works for keras and tf layers.

Examples

if (FALSE) { model= keras_model_sequential() %>% layer_weight_normalization( layer_conv_2d(filters = 2, kernel_size = 2, activation = 'relu'), input_shape = c(32L, 32L, 3L)) model }