Sigmoid focal crossentropy loss
loss_sigmoid_focal_crossentropy( from_logits = FALSE, alpha = 0.25, gamma = 2, reduction = tf$keras$losses$Reduction$NONE, name = "sigmoid_focal_crossentropy" )
from_logits | If logits are provided then convert the predictions into probabilities |
---|---|
alpha | balancing factor. |
gamma | modulating factor. |
reduction | (Optional) Type of tf$keras$losses$Reduction to apply. Default value is SUM_OVER_BATCH_SIZE. |
name | (Optional) name for the loss. |
Weighted loss float `Tensor`. If `reduction` is `NONE`,this has the same shape as `y_true`; otherwise, it is scalar.
if (FALSE) { keras_model_sequential() %>% layer_dense(4, input_shape = c(784)) %>% compile( optimizer = 'sgd', loss=loss_sigmoid_focal_crossentropy(), metrics='accuracy' ) }