The fastai library
simplifies training fast and accurate neural nets using modern best
practices. See the fastai website to get started. The library is based
on research into deep learning best practices undertaken at
fast.ai
, and includes “out of the box” support for
vision
, text
, tabular
, and
collab
(collaborative filtering) models.
Via rvest
package we can search and scrape any category
of image. Int this example we will classify 4 cat categories:
# cat categories: https://www.purina.com/cats/cat-breeds
f_n = 'cats'
if(!dir.exists(f_n)) {
dir.create(f_n)
}
A function to download cat images:
library(rvest)
download_pet = function(name, dest) {
query = name
query = gsub('\\s', '%20', query)
search <- read_html(paste("https://www.google.com/search?site=&tbm=isch&q", query, sep = "="))
urls <- search %>% html_nodes("img") %>% html_attr("src") %>% .[-1]
fixed_name = gsub('\\s|[[:punct:]]', '_', name)
for (i in 1:length(urls)) {
download.file(urls[i], destfile =
file.path(dest,
paste(
paste(fixed_name,
round(runif(1)*10000),
sep = '_'),
'.jpg', sep = ''
)
), mode = 'wb'
)
}
}
Lets define cat groups:
cat_names = c('Balinese-Javanese Cat Breed', 'Chartreux Cat Breed',
'Norwegian Forest Cat Breed', 'Turkish Angora Cat Breed')
And iterate throught vector:
Call libraries and import dataset:
library(fastai)
library(magrittr)
path = 'cats'
fnames = get_image_files(path)
fnames[1]
# cats/Turkish_Angora_Cat_Breed_8583.jpg
See batch:
dls = ImageDataLoaders_from_name_re(
path, fnames, pat='(.+)_\\d+.jpg$',
item_tfms = Resize(size = 200), bs = 15,
batch_tfms = list(aug_transforms(size = 224, min_scale = 0.75),
Normalize_from_stats( imagenet_stats() )
)
)
dls %>% show_batch(dpi = 200)
Define cnn_learner
and fit. But before that it is better
to see the train metrics as well.
learn = cnn_learner(dls, resnet50(), metrics = list(accuracy, error_rate))
learn$recorder$train_metrics = TRUE
learn %>% fit_one_cycle(5, 1e-3)
epoch train_loss train_accuracy train_error_rate valid_loss valid_accuracy valid_er_r
0 2.145128 0.333333 0.666667 1.205951 0.500000 0.500000
1 1.480864 0.650000 0.350000 0.605784 0.812500 0.187500
2 1.114904 0.850000 0.150000 0.353506 0.812500 0.187500
3 0.858903 0.916667 0.083333 0.219998 0.875000 0.125000
4 0.706619 0.933333 0.066667 0.231960 0.937500 0.062500
Predict random image:
fnames[1]
# cats/Turkish_Angora_Cat_Breed_8583.jpg
learn %>% predict(as.character(fnames[1]))
$probabilities
Balinese_Javanese_Cat_Breed Chartreux_Cat_Breed Norwegian_Forest_Cat_Breed Turkish_Angora_Cat_Breed
1 0.001805532 0.004121034 0.09873049 0.8953429
$labels
[1] "Turkish_Angora_Cat_Breed"