First, we need to install timeseries_fastai module
for
Time-Series
integration.
reticulate::py_install('git+https://github.com/tcapelle/timeseries_fastai.git', pip = TRUE)
Download the data from Facebook Github page (Prophet):
library(dplyr)
library(fastai)
df = data.table::fread('https://raw.githubusercontent.com/facebook/prophet/master/examples/example_wp_log_peyton_manning.csv')
ds y
1: 2007-12-10 9.590761
2: 2007-12-11 8.519590
3: 2007-12-12 8.183677
4: 2007-12-13 8.072467
5: 2007-12-14 7.893572
6: 2007-12-15 7.783641
dls = TSDataLoaders_from_dfs(df_train, df_test, x_cols = x_cols, label_col = 'y', bs=60,
y_block = RegressionBlock())
dls %>% show_batch()
inception = create_inception(1, 1)
learn = Learner(dls, inception, metrics=list(mae(), rmse()))
Sequential(
(0): SequentialEx(
(layers): ModuleList(
(0): InceptionModule(
(convs): ModuleList(
(0): Conv1d(1, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False)
(1): Conv1d(1, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False)
(2): Conv1d(1, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False)
)
(conv_bottle): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(1, 32, kernel_size=(1,), stride=(1,), bias=False)
)
(bn_relu): Sequential(
(0): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
)
)
)
)
(1): SequentialEx(
(layers): ModuleList(
(0): InceptionModule(
(bottleneck): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
(convs): ModuleList(
(0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False)
(1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False)
(2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False)
)
(conv_bottle): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
)
(bn_relu): Sequential(
(0): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
)
)
)
)
(2): SequentialEx(
(layers): ModuleList(
(0): InceptionModule(
(bottleneck): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
(convs): ModuleList(
(0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False)
(1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False)
(2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False)
)
(conv_bottle): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
)
(bn_relu): Sequential(
(0): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
)
)
(1): Shortcut(
(act_fn): ReLU(inplace=True)
(conv): ConvLayer(
(0): Conv1d(128, 128, kernel_size=(1,), stride=(1,), bias=False)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(bn): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(3): SequentialEx(
(layers): ModuleList(
(0): InceptionModule(
(bottleneck): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
(convs): ModuleList(
(0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False)
(1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False)
(2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False)
)
(conv_bottle): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
)
(bn_relu): Sequential(
(0): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
)
)
)
)
(4): SequentialEx(
(layers): ModuleList(
(0): InceptionModule(
(bottleneck): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
(convs): ModuleList(
(0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False)
(1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False)
(2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False)
)
(conv_bottle): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
)
(bn_relu): Sequential(
(0): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
)
)
)
)
(5): SequentialEx(
(layers): ModuleList(
(0): InceptionModule(
(bottleneck): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
(convs): ModuleList(
(0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False)
(1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False)
(2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False)
)
(conv_bottle): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
)
(bn_relu): Sequential(
(0): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
)
)
(1): Shortcut(
(act_fn): ReLU(inplace=True)
(conv): ConvLayer(
(0): Conv1d(128, 128, kernel_size=(1,), stride=(1,), bias=False)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(bn): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(6): AdaptiveConcatPool1d(
(ap): AdaptiveAvgPool1d(output_size=1)
(mp): AdaptiveMaxPool1d(output_size=1)
)
(7): Flatten(full=False)
(8): Linear(in_features=256, out_features=1, bias=True)
)
Fit and include early stopping:
learn %>% fit_one_cycle(30, 1e-5, cbs = EarlyStoppingCallback(patience = 5))
learn %>% predict(df_test)
y
1 5.925275
2 5.925579
3 6.060019
4 5.749205
5 5.793755
6 5.974738
7 7.185201
8 6.897375
9 7.095043
10 7.082201
11 6.916879
12 6.802319
13 6.714959
14 6.589868
15 6.436776
16 7.105388
17 7.237350
18 7.133458
19 7.103930