Initialize and return a `Learner` object with the data in `dls`, CycleGAN model `m`, optimizer function `opt_func`, metrics `metrics`,
cycle_learner(
dls,
m,
opt_func = Adam(),
show_imgs = TRUE,
imgA = TRUE,
imgB = TRUE,
show_img_interval = 10,
...
)
dataloader
CycleGAN model
optimizer
show images
image a (from)
image B (to)
show images interval rafe
additional arguments
None
and callbacks `cbs`. Additionally, if `show_imgs` is TRUE, it will show intermediate predictions during training. It will show domain B-to-A predictions if `imgA` is TRUE and/or domain A-to-B predictions if `imgB` is TRUE. Additionally, it will show images every `show_img_interval` epochs. ` Other `Learner` arguments can be passed as well.