Initialize and return a `Learner` object with the data in `dls`, CycleGAN model `m`, optimizer function `opt_func`, metrics `metrics`,

cycle_learner(
  dls,
  m,
  opt_func = Adam(),
  show_imgs = TRUE,
  imgA = TRUE,
  imgB = TRUE,
  show_img_interval = 10,
  ...
)

Arguments

dls

dataloader

m

CycleGAN model

opt_func

optimizer

show_imgs

show images

imgA

image a (from)

imgB

image B (to)

show_img_interval

show images interval rafe

...

additional arguments

Value

None

Details

and callbacks `cbs`. Additionally, if `show_imgs` is TRUE, it will show intermediate predictions during training. It will show domain B-to-A predictions if `imgA` is TRUE and/or domain A-to-B predictions if `imgB` is TRUE. Additionally, it will show images every `show_img_interval` epochs. ` Other `Learner` arguments can be passed as well.